Some characterizations for compact almost Ricci solitons
نویسندگان
چکیده
منابع مشابه
Convergence of compact Ricci solitons
We show that sequences of compact gradient Ricci solitons converge to complete orbifold gradient solitons, assuming constraints on volume, the L-norm of curvature, and the auxiliary constant C1. The strongest results are in dimension 4, where L 2 curvature bounds are equivalent to upper bounds on the Euler number. We obtain necessary and sufficient conditions for limits to be compact.
متن کاملGeometry of compact shrinking Ricci solitons
Einstein manifolds are trivial examples of gradient Ricci solitons with constant potential function and thus they are called trivial Ricci solitons. In this paper, we prove two characterizations of compact shrinking trivial Ricci solitons. M.S.C. 2010: 53C25.
متن کاملRicci Solitons on Compact Kahler Surfaces
We classify the Kähler metrics on compact manifolds of complex dimension two that are solitons for the constant-volume Ricci flow, assuming that the curvature is slightly more positive than that of the single known example of a soliton in this dimension.
متن کاملRicci Solitons on Compact Three-manifolds
In this short article we show that there are no compact three-dimensional Ricci solitons other than spaces of constant curvature. This generalizes a result obtained for surfaces by Hamilton [4]. The proof involves a careful analysis of the ODE for the curvature which is associated to the Ricci flow.
متن کاملRemarks on Non-compact Complete Ricci Expanding Solitons
In this paper, we study gradient Ricci expanding solitons (X, g) satisfying Rc = cg +Df, where Rc is the Ricci curvature, c < 0 is a constant, and Df is the Hessian of the potential function f on X . We show that for a gradient expanding soliton (X, g) with non-negative Ricci curvature, the scalar curvature R has at least one maximum point on X , which is the only minimum point of the potential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2012
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2011-11029-3